tp modul 2 percobaan 1
1. Prosedur [kembali]
- Siapkan Komponen komponen yang diperlukan
- Rangkai sesuai gambar dan kondisi
- Siapkan listing program dan konfigurasi pin sesuai proteus pada software STM32CubeIDE
- Import listing program ke proteus
- Running proteus untuk melihat Hasil
2. Hardware dan Diagram Blok [kembali]
3. Rangkaian Simulasi dan Prinsip Kerja [kembali]
prinsip kerja :
Rangkaian kendali motor DC dan buzzer menggunakan mikrokontroler STM32F103C8.
Komponen Utama:
- U1: Mikrokontroler STM32F103C8
- Potensiometer atau LDR: Input analog (di gambar kamu pakai LDR, tapi instruksi soal pakai potensiometer).
- BUZ1: Buzzer sebagai alat peringatan suara.
- Motor DC: Digerakkan via transistor Q1 (BD139).
- Diode sebagai flyback diode (melindungi rangkaian dari tegangan balik motor DC).
Prinsip Kerja:
- Input dibaca dari LDR (atau potensiometer):Mikrokontroler membaca nilai tegangan analog dari LDR. Nilai ini diubah menjadi data digital melalui ADC (Analog to Digital Converter)
- Mikrokontroler membandingkan nilai input terhadap 2 threshold: Jika nilai < 1500: Motor DC berputar dengan duty cycle 10% → artinya motor berputar pelan . Buzzer berbunyi dengan frekuensi rendah (suara "beep" pelan). Jika nilai > 3000: Motor DC berputar dengan duty cycle 90% → motor berputar cepat. Buzzer mati (tidak berbunyi).
- Motor DC dikendalikan melalui transistor: Q1 (BD139) berfungsi sebagai saklar elektronik. Sinyal PWM dari STM32 mengatur basis transistor → transistor mengontrol arus besar ke motor DC.
- Buzzer dikendalikan langsung dari mikrokontroler: Ketika aktif, PWM diatur pada frekuensi rendah untuk menghasilkan bunyi "beep" lambat.
- Dioda D1 Dipasang paralel dengan motor DC. Melindungi transistor dari tegangan induksi berbahaya saat motor tiba-tiba mati (efek dari kumparan motor).
Alur Logika Program yang Diperlukan:
ADC → Jika < 1500 → Motor PWM 10%, Buzzer ON
Jika > 3000 → Motor PWM 90%, Buzzer OFF
Kesimpulan:
➡ Ini adalah sistem kontrol berbasis input analog yang mengatur kecepatan motor dan kondisi buzzer tergantung besar kecilnya input tegangan dari LDR/potensiometer.
4. Flowchart dan Listing Program [kembali]
listing program
#include "main.h"
ADC_HandleTypeDef hadc1;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM2_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_ADC1_Init();
MX_TIM1_Init();
MX_TIM2_Init();
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1); // Motor PWM
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3); // Buzzer PWM
HAL_ADC_Start(&hadc1);
uint8_t buzzer_enabled = 1;
uint32_t last_buzzer_change = 0;
uint8_t buzzer_freq_index = 0;
const uint32_t buzzer_periods[] = {143999, 71999, 47999}; // Frekuensi berbeda
// Threshold (dari rendah → sedang → tinggi)
const uint16_t THRESH_LOW = 1500;
const uint16_t THRESH_MID
while (1)
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 10);
uint32_t adc_val = HAL_ADC_GetValue(&hadc1);
// --- Motor Control ---
if (adc_val < THRESH_LOW)
{
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 200); // Lambat
}
else if (adc_val < THRESH_MID)
{
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 600); // Sedang
}
else
{
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 1000); // Cepat
}
// --- Buzzer Logic ---
if (adc_val < THRESH_LOW && buzzer_enabled)
{
// Ubah frekuensi buzzer setiap 500ms
if (HAL_GetTick() - last_buzzer_change >= 500)
{
last_buzzer_change = HAL_GetTick();
buzzer_freq_index = (buzzer_freq_index + 1) % 3;
uint32_t period = buzzer_periods[buzzer_freq_index];
__HAL_TIM_SET_AUTORELOAD(&htim2, period);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, period / 2); // 50% duty
}
}
else
{
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0); // Matikan buzzer
}
// --- Button Logic (PB0 ditekan = nonaktifkan buzzer) ---
if (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0) == GPIO_PIN_SET)
{
buzzer_enabled = 0;
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0); // Paksa matikan
buzzer
}
HAL_Delay(10);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType =
RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_TIM1_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) !=
HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) !=
HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) !=
HAL_OK)
{
Error_Handler();
}
HAL_TIM_MspPostInit(&htim1);
}
static void MX_TIM2_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfig
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) !=
HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) !=
HAL_OK)
{
Error_Handler();
}
HAL_TIM_MspPostInit(&htim2);
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin : PB0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
void Error_Handler(void)
{
__disable_irq();
while (1)
{
}
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line)
{
}
#endif /* USE_FULL_ASSERT */
5. Video Demo [kembali]
6. Kondisi [kembali]
Buatlah rangkaian seperti gambar pada percobaan 3, Jika nilai potensiometer di bawah threshold 1500 maka motor DC berputar dengan duty cycle 10% dan buzzer berbunyi dengan frekuensi rendah; jika nilai di atas threshold 3000 maka motor DC berputar dengan duty cycle 90% dan buzzer mati
7. Video Simulasi [kembali]
8. Download file [kembali]
Komentar
Posting Komentar